
 
 

A wide-bandgap copolymer donor with a 5-methyl-4H-
dithieno[3,2-e:2',3'-g]isoindole-4,6(5H)-dione unit

Anxin Sun1, 2, ‡, Jingui Xu2, 3, ‡, Guanhua Zong2, Zuo Xiao2, †, Yong Hua1, †, Bin Zhang3, †, and Liming Ding2, †

1Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
2Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for
Nanoscience and Technology, Beijing 100190, China
3School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
 

Citation: A X Sun, J G Xu, G H Zong, Z Xiao, Y Hua, B Zhang, and L M Ding, A wide-bandgap copolymer donor with a 5-methyl-4H-
dithieno[3,2-e:2',3'-g]isoindole-4,6(5H)-dione  unit[J]. J.  Semicond.,  2021,  42(10),  100502. http://doi.org/10.1088/1674-4926/42/
10/100502

 

Wide-bandgap copolymer donors with fused-ring accept-
or  units  (FAUs)  present  excellent  performance  in  non-
fullerene  organic  solar  cells  due  to  their  complementary
light-absorption  with  nonfullerene  acceptors,  deep  the
highest  occupied  molecular  orbital  (HOMO)  levels  and  high
hole  mobilities[1−4].  A  bunch of  FAU-based copolymer  donors
were developed in recent years,  such as PM6[5],  PM7[6],  PBQx-
TCl[7],  PTQ10[8],  PBQ6[9],  P2F-EHp[10],  D16[11],  L1-S[12],  D18[13, 14]

and D18-Cl[15, 16].  They delivered >16% power conversion effi-
ciencies (PCEs) in solar cells. To develop good FAUs is the key
toward  efficient  FAU-based  copolymer  donors.  A  good  FAU
generally  has  a  strong  electron-withdrawing  character  that
leads  to  a  low  HOMO  level  and  a  high  open-circuit  voltage
(Voc), and a relatively large molecular plane that facilitates poly-
mer  stacking  and  enhances  hole  mobility.  Recently,  we  de-
veloped  copolymer  donors  D18  and  D18-Cl  by  using  dithi-
eno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole  (DTBT)
unit[13] (Fig.  1(a)).  Thanks  to  the  strong  electron-withdrawing
property  and  the  rigid  and  extended  molecular  plane  of
DTBT,  D18  and  D18-Cl  deliver  outstanding  PCEs  up  to
18.69%[13−16].  The  success  of  D18  polymers  stimulated  us  to
design  more  high-performance  copolymer  donors  with  nov-
el  FAUs.  In  this  work,  we  designed  a  wide-bandgap  copoly-
mer  donor  P1  by  using  a  fused-ring  imide  building  block,  5-
methyl-4H-dithieno[3,2-e:2',3'-g]isoindole-4,6(5H)-dione
(MDTID).  Compared  with  the  thiadiazole  moiety  in  DTBT,  the
imide  moiety  in  MDTID  is  more  electron-withdrawing.  The
density functional theory (DFT) calculations show that MDTID
has deeper HOMO and the lowest unoccupied molecular orbit-
al (LUMO) levels than DTBT, suggesting the stronger electron-
accepting  capability  of  MDTID  (Fig.  1(a)).  DFT  calculations
also indicate that MDTID leads to a deeper HOMO for P1 than
that of D18, thus benefiting Voc (Fig. S1).

The  synthetic  route  for  P1  is  shown  in Fig.  1(b).  Stille
coupling  of  3,4-dibromo-1-methyl-1H-pyrrole-2,5-dione  and
tributyl(thiophen-3-yl)stannane  gave  compound  1  in  83%
yield.  Scholl  reaction[17] of  compound  1  with  FeCl3 afforded

MDTID  in  43%  yield.  Bromination  of  MDTID  with  NBS  gave
MDTID-Br  in  90%  yield.  Stille  coupling  of  MDTID-Br  and
tributyl(4-(2-butyloctyl)thiophen-2-yl)stannane  gave  com-
pound  2  in  41%  yield.  Bromination  of  compound  2  with  NBS
gave  monomer  M1  in  81%  yield.  Finally,  copolymerization  of
M1  with  (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo
[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane)  gave
P1  in  75%  yield.  The  number-average  molecular  weight  (Mn)
for  P1  is  69.7  kDa,  and  the  polydispersity  index  (PDI)  is  1.73.
P1 is soluble in chloroform and chlorobenzene.

The optical, electrochemical and hole-transporting proper-
ties of P1 were investigated. In solution, P1 shows an absorp-
tion  band  at  400–620  nm,  with  a  peak  at  536  nm  (Fig.  1(c)).
For  the  film,  this  peak  shifts  to  523  nm.  The  13  nm-blueshift
suggests the H-aggregation of P1 in film[18]. The absorption on-
set  of  P1  film  is  601  nm,  corresponding  to  an  optical
bandgap (Eg

opt) of 2.06 eV. The absorption spectra for accept-
ors N3[19] and IT-4F[20] are also shown in Fig. 1(c). They are com-
plementary  with  that  of  P1.  The  HOMO  and  LUMO  energy
levels of P1 were estimated from cyclic voltammetry (CV) meas-
urements  (Fig.  S11).  An  energy  level  diagram  is  given  in  Fig.
S12.  P1  has  a  HOMO  of  –5.54  eV  and  a  LUMO  of  –2.78  eV.
From CV, the HOMO of P1 is deeper than that of D18[10], simil-
ar  to  the result  of  DFT calculation (Fig.  S1).  The hole  mobility
(μh)  of  P1  was  measured  by  using  space-charge  limited  cur-
rent  (SCLC)  method  (Fig.  S13)[21−25].  Pure  P1  film  presented  a
μh of 7.10 × 10–4 cm2/(V·s). The good μh of P1 could be due to
the extended molecular plane of MDTID, which facilitates poly-
mer packing and enhances charge transport.

Solar cells were made with a structure of ITO/PEDOT:PSS/
active  layer/PDIN/Ag.  The  D/A  ratio,  active  layer  thickness
and  additive  content  were  optimized  (Tables  S1–S6). J–V
curves  and  external  quantum  efficiency  (EQE)  spectra  for  the
best cells are presented in Figs. 1(d) and 1(e), respectively. Per-
formance  data  are  listed  in Table  1.  The  best  P1:N3  cell  gave
a  PCE  of  14.52%,  with  a Voc of  0.90  V,  a Jsc of  24.52  mA/cm2

and an FF of 65.8%, while the best P1:IT-4F cell gave a PCE of
12.46%, with a Voc of  0.95 V,  a Jsc of  20.31 mA/cm2 and an FF
of  64.6%.  Both  cells  gave  high Voc (>  0.9  V)  due  to  the  deep
HOMO  of  P1.  The Voc of  P1:IT-4F  cells  is  0.05  V  higher  than
that of P1:N3 cells due to the higher LUMO level of IT-4F (Fig.
S12).  Compared  with  P1:IT-4F  cells,  P1:N3  cells  gave  much
higher Jsc due to the broader light-absorption of N3 than that
of  IT-4F.  P1:N3  cells  presented  higher  EQE  at  760–960  nm
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(Fig.  1(e)).  The  integrated  photocurrent  densities  from  EQE
spectra  are  23.34  and  19.83  mA/cm2 for  P1:N3  and  P1:IT-4F
cells,  respectively,  consisting  with Jsc.  From  SCLC  measure-
ments (Figs. S14 and S15, Table S7), we found the μh and elec-
tron mobility  (μe)  are  both higher  in  P1:N3 film than those in
P1:IT-4F  film,  suggesting  more  efficient  charge  transport  in
the  former  cells.  The μh/μe are  1.48  and  2.06  for  P1:N3  and
P1:IT-4F  cells,  respectively,  suggesting  charge transport  is
more  balanced  in  P1:N3  cells,  thus  explaining the  higher  FF.
The  bimolecular  recombination  was  studied  by  plotting Jsc

against  light  intensity[26−29].  The α value  is  closer  to  1  for
P1:N3  cells,  suggesting  less  bimolecular  recombination  (Fig.
S16). We studied the morphology of blend films by using atom-
ic  force  microscope  (AFM)  (Fig.  S17).  The  root-mean-square
roughnesses  for  P1:N3  and  P1:IT-4F  films  are  0.80  and  1.76
nm,  respectively.  Typical  nano-fibers  were  observed.  The
P1:N3 film might have more favorable phase separation.

In  short,  we  designed  a  copolymer  donor  by  using  a
fused-ring imide unit  MDTID.  The polymer  delivered high Voc

(>  0.9  V)  and  decent  PCEs  (up  to  14.52%)  in  organic  solar
cells.  This  work  indicates  that  MDTID  is  a  promising  building
block.
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